Statistics of subthreshold neuronal voltage fluctuations due to conductance-based synaptic shot noise.

نویسندگان

  • Magnus J E Richardson
  • Wulfram Gerstner
چکیده

Neurons in the central nervous system, and in the cortex in particular, are subject to a barrage of pulses from their presynaptic populations. These synaptic pulses are mediated by conductance changes and therefore lead to increases or decreases of the neuronal membrane potential with amplitudes that are dependent on the voltage: synaptic noise is multiplicative. The statistics of the membrane potential are of experimental interest because the measurement of a single subthreshold voltage can be used to probe the activity occurring across the presynaptic population. Though the interpulse interval is not always significantly smaller than the characteristic decay time of the pulses, and so the fluctuations have the nature of shot noise, the majority of results available in the literature have been calculated in the diffusion limit, which is valid for high-rate pulses. Here the effects that multiplicative conductance noise and shot noise have on the voltage fluctuations are examined. It is shown that both these aspects of synaptic drive sculpt high-order features of the subthreshold voltage distribution, such as the skew. It is further shown that the diffusion approximation can only capture the effects arising from the multiplicative conductance noise, predicting a negative voltage skew for excitatory drive. Exact results for the full dynamics are derived from a master-equation approach, predicting positively skewed distributions with long tails in voltage ranges typical for action potential generation. It is argued that, although the skew is a high-order feature of subthreshold voltage distributions, the increased probability of reaching firing threshold suggests a potential role for shot noise in shaping the neuronal transfer function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic Shot Noise and Conductance Fluctuations Affect the Membrane Voltage with Equal Significance

The subthreshold membrane voltage of a neuron in active cortical tissue is a fluctuating quantity with a distribution that reflects the firing statistics of the presynaptic population. It was recently found that conductance-based synaptic drive can lead to distributions with a significant skew. Here it is demonstrated that the underlying shot noise caused by Poissonian spike arrival also skews ...

متن کامل

Mean, Variance, and Autocorrelation of Subthreshold Potential Fluctuations Driven by Filtered Conductance Shot Noise

We study the subthreshold voltage fluctuations of a conductance-based passive point neuron stimulated by filtered Poissonian shot noise. We give exact analytical expressions in terms of quadratures for the first two time-dependent moments and the autocorrelation function of the membrane voltage. We also derive simplified expressions for the moments in terms of elementary functions that hold tru...

متن کامل

Characterization of Subthreshold Voltage Fluctuations in Neuronal Membranes

Synaptic noise due to intense network activity can have a significant impact on the electrophysiological properties of individual neurons. This is the case for the cerebral cortex, where ongoing activity leads to strong barrages of synaptic inputs, which act as the main source of synaptic noise affecting on neuronal dynamics. Here, we characterize the subthreshold behavior of neuronal models in...

متن کامل

Subthreshold voltage noise of rat neocortical pyramidal neurones.

Neurones are noisy elements. Noise arises from both intrinsic and extrinsic sources, and manifests itself as fluctuations in the membrane potential. These fluctuations limit the accuracy of a neurone's output but have also been suggested to play a computational role. We present a detailed study of the amplitude and spectrum of voltage noise recorded at the soma of layer IV-V pyramidal neurones ...

متن کامل

Method to calculate the moments of the membrane voltage in a model neuron driven by multiplicative filtered shot noise.

Neurons are subject to synaptic inputs from many other cells. These inputs consist of spikes changing the conductivity of the target cell, i.e., they enter the neural dynamics as multiplicative shot noise. Up to now, only for simplified models like current-based (additive-noise) point neurons or models with Gaussian white-noise input, exact solutions are available. We present a method to calcul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chaos

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 2006